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Abstract

High early larval mortality hinders African catfish (Clarias gariepinus) aquaculture. This
study aimed to identify novel indigenous Ethiopian probiotics to enhance larval growth
and survival. Lactic Acid Bacteria (LAB) were isolated from African catfish and Nile
tilapia, then screened in vitro for probiotic potential. Selected strains were evaluated
in a catfish larval feeding, and associated pathogens and their antibiotic resistance
patterns were also assessed. Lactobacillus was the dominant probiotic genus. In vitro,
strains showed excellent acid/bile tolerance and broad-spectrum antimicrobial
activity. Crucially, host-specific Lactobacillus spp. from African catfish remarkably
improved larval growth and survival (up to 78.3%) compared to the control (56.5%)
and non-host-specific probiotics. However, widespread resistance to key antibiotics
(e.g., penicillin G, kanamycin) was found in both LAB and pathogenic isolates, including
Staphylococcus aureus. These findings underscore the considerable potential of
indigenous, host-specific probiotics for sustainable African catfish aquaculture, while
highlighting the critical need to address emerging antibiotic resistance.

compensated for a decline in Egypt, the continent's
primary producer (FAO, 2022, 2024).

Aquaculture is a rapidly expanding sector crucial
for global food security. Its share of total aquatic
production surged from around 5% in the 1950s to 70s
t0 49.2% by 2020, reaching a historic 51% (130.9 million
tonnes) in 2022 and surpassing capture fisheries for the
first time (FAO, 2020, 2022, 2024). This growth is driven
by rising demand, as annual per capita consumption of
aquatic food increased from 9.1 kg in 1961 to 20.7 kg in
2022. Regionally, production in Africa is also expanding,
reaching 2.9 million tonnes (USD 7.3 billion) in 2022. This
occurred despite variations, such as in 2020 when a
14.5% output expansion in other African nations

Published by Central Fisheries Research Institute (SUMAE) Trabzon, Tirkiye.

In 2022, inland aquaculture constituted 62.6% of
global farmed aquatic animal production, primarily
composed of carps (15.7%), tilapias (10.0%), and
salmonids (8.4%). By contrast, African finfish
aquaculture exhibits limited species diversity, with
production dominated by Nile tilapia (82.8%) and the
less frequently farmed African catfish (10.1%) (FAO,
2022, 2024). Despite its smaller share, African catfish
(Clarias gariepinus) is a widely cultivated pond species
(Toko et al., 2007; Adewolu et al., 2008) due to its
production and market advantages. These include
resilience to high-density culture, disease, and harsh
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conditions (Adewolu et al., 2010; Chor et al.,, 2013),
rapid growth, efficient feed conversion, and excellent
flesh quality (Hecht et al., 1996; Ali & Jauncey, 2005;
Schram et al., 2010; Gbadamosi et al., 2017).

In Ethiopia, the African catfish is a widely
distributed and commercially important species with
high market value and consumer demand (Personal
observations; Habteselassie, 2012; Getahun, 2017).
However, its aquaculture potential is constrained by an
unreliable seed supply, a direct result of high early larval
mortality and underdeveloped rearing techniques
(Brummett et al., 2008; Rothuis et al., 2012). Managing
this mortality is therefore critical for establishing
sustainable African catfish aquaculture.

Probiotics are an innovative and sustainable
alternative to antibiotics for enhancing fish health and
immunity in aquaculture (Hill et al., 2014; Wang et al.,
2019; Subedi & Shrestha, 2021). These living
microorganisms confer host benefits such as improved
feed utilization, disease resistance, and water quality
(Neven et al., 2010; Dawood et al., 2016; Calcagnile et
al., 2024). Lactic acid bacteria (LAB) are particularly
notable for their safety and ability to enhance growth,
feed conversion, and immune function (Gildberg et al.,
1997; Akhter et al., 2015; Wang et al., 2019; Hasan &
Banerjee, 2020). Thus investigating probiotic
supplementation to resolve African catfish production
obstacles is warranted.

Despite their recognized potential, the specific
effects of probiotics on African catfish larviculture,
particularly from indigenous sources within a regional
context like Ethiopia, remain understudied in indoor
hatchery systems. This study directly addresses this
critical knowledge gap by uniquely focusing on the
screening and characterization of indigenous Ethiopian
probiotics and associated fish pathogens. Subsequently,
it evaluates the effects of these selected, locally-sourced
probiotics on larval growth and survival under
controlled conditions. Our primary aim is to contribute
to more sustainable African catfish seed production,
both in Ethiopia and globally, through the application of
regionally adapted probiotic solutions.

Materials and Methods

This study was conducted in Jimma, Ethiopia (353
km southwest of Addis Ababa, 1780 m altitude), an area
with a warm climate characterized by mean annual
temperatures of 14-30°C and rainfall of 1138-1690 mm
(Alemu et al., 2011). Local artisanal aquaculture of Nile
tilapia (Oreochromis niloticus) is common but
constrained by practices like single-species culture.

African catfish (Clarias gariepinus) and Nile tilapia
were collected from the local Boye River for probiotic
isolation. Probiotic candidates were isolated from the
fish gut and surface mucus following methods by Wanka
et al. (2018) and Thomas & Amaresan (2023). After
surface sterilization with 70% ethanol, gut tissue was
aseptically dissected and homogenized. Both gut

homogenates and body surface swabs were serially
diluted (up to 107%) in peptone water, and 0.1 mL
aliquots were spread-plated onto de Man, Rogosa, and
Sharpe (MRS) agar. Plates were incubated anaerobically
at 32°C for 24 hours, after which distinct colonies were
purified by repeated sub-culturing and maintained on
MRS agar slants at 4°C.

For characterization, well-isolated colonies were
cultured in MRS broth and incubated at 32°C for 24
hours. Cultures were purified by sub-culturing and the
resulting LAB isolates were characterized using
established morphological (Gram staining, motility,
endospore detection), biochemical (KOH, catalase,
cytochrome oxidase, carbohydrate fermentation), and
physiological (temperature, salt tolerance) tests
(Schaeffer & Fulton, 1933; Kovacs, 1956; Gregerson,
1978; MacFaddin, 1980; Tambekar & Bhutada, 2010;
Shields & Cathcart, 2011; Ayo-Omogie and Okorie, 2016;
Hassan, 2018). Genus-level identification was based on
Bergey's Manual of Systematic Bacteriology (Vos et al.,
2009).

LAB isolates were evaluated in vitro for key
probiotic properties. Acid and bile tolerance were
assessed by inoculating cultures into MRS broth
adjusted to pH 2 & 3 (using HCl or NaOH), or
supplemented with 0.3% or 0.5% bile salts, respectively,
and incubated anaerobically at 32°C for 24 h.
Subsequently, cultures from both tests were streaked
onto MRS agar and incubated, with survival confirmed
by subsequent growth on MRS agar (Ayo-Omogie &
Okorie, 2016; Kim et al., 2018).

Antimicrobial activity was evaluated using an agar
well diffusion assay, where cell-free supernatants (CFS)
from centrifuged LAB cultures were filter-sterilized and
tested against reference pathogens: Bacillus cereus,
Staphylococcus aureus subsp. aureus, Salmonella
enterica subsp. Enterica Serovar Typhimurium,
Escherichia coli, and Candida albicans. Following 24
hours of anaerobic incubation at 32°C, the diameter of
the resulting inhibition zones was measured to quantify
the effect (Balouiri et al., 2016). Finally, antibiotic
susceptibility was determined using the disk diffusion
method  against chloramphenicol, ciprofloxacin,
clindamycin, erythromycin, kanamycin, penicillin G, and
streptomycin. Isolates were classified, based on zones of
inhibition, as susceptible (221 mm), intermediate (16-20
mm), or resistant (<15 mm), with intermediate results
conservatively classified as resistant (Vlkova et al.,
2006).

Based on these evaluations, LAB isolates
demonstrating strong antimicrobial activity (215 mm),
tolerance to pH 2 and 0.5% bile salt, broad temperature
tolerance, and resistance to common antibiotics were
selected for the in vivo larval trial (Kosin & Rakshit,
2006).

To provide a holistic microbial profile, common fish
pathogens were also isolated from the same probiotic
source fish. Gut contents and surface swabs were
homogenized in Buffered Peptone Water (BPW) by
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shaking at 250 rpm for 5 minutes and serially diluted to
107 for downstream analyses. Aliquots were spread-
plated onto selective media: Mannitol Salt Agar for
Staphylococcus aureus; Pseudomonas Agar Base for
Pseudomonas spp. (Su et al., 2018); and Eosin
Methylene Blue Agar for Escherichia coli (Su et al., 2018).
For Salmonella, Shigella, and Listeria spp., samples
underwent pre-enrichment, selective enrichment, and
plating on their respective selective agars (Keelara et al.,
2015; Ashrafudoulla et al., 2021). All specified bacterial
groups were incubated at 37°C, with Staphylococcus
aureus, Pseudomonas spp., and Escherichia coli for 48
hours, while Listeria, Salmonella, and Shigella spp.
underwent multi-step enrichment and incubation
processes lasting 24 hours per stage. Presumptive
colonies were confirmed through Gram staining and a
panel of standard biochemical tests relevant to each
genus (Rhaiem et al., 2016).

African catfish broodstock for the larval trial were
selected based on morphological signs of sexual
maturity (De Graaf et al., 1995; Gadissa & Devi, 2013;
Natea et al., 2017) and disinfected with formalin (25
mL/L for 30 minutes) before acclimatization (Floyd,
1996; Natea et al., 2017).

Live feed for the larvae, consisting of zooplankton
and phytoplankton, was cultured in earthen ponds
fertilized with cow dung. Plankton was harvested with
20 um mesh nets and identified using established keys
(Prescott, 1954; Belcher & Swale, 1976; Fernando, 2002;
Bowling, 2009; Kobayashi et al., 2009).

For induced spawning, broodstock were injected
with pituitary gland extract. Pituitary extract from
mature male African catfish was isolated, transferred
into 0.9 g saline solution, and administered at a dose of
2 ml proportional to a 2 kg donor weight. Eggs were
stripped from females into a dry container, and milt was
harvested from euthanized males by mincing testes in
physiological saline (0.9% NaCl). Fertilization was
achieved by gently mixing eggs and milt (Richter et al.,
1987). Fertilized eggs were incubated in a 15 L aerated
basin at 27-30°C on a fine mesh substrate. Hatching
commenced after approximately 19 hours and was
complete within 26 hours. Hatched larvae were
separated from dead eggs to prevent fungal infection
(Graaf & Janssen, 1996). After yolk sac absorption (2-3
days), free-swimming larvae were transferred to a larger
tank and fed live feed, then gradually weaned onto a
powdered artificial diet over seven days before being
moved to glass aquaria for a 20-day acclimation period
(Hogendoorn & Vismans, 1980; Haylor, 1993; Hecht et
al., 1996).

Due to resource limitations, the indoor aquarium
trial employed a completely randomized design with
two replicates per control and four probiotic treatment
groups. While this provided a basis for comparison, we
acknowledge that a higher number of replicates would
have further strengthened the statistical robustness of
our findings and better accounted for potential
biological variability within the experimental units. This

limitation has been considered when interpreting the
statistical significance and generalizability of the results.
Four pre-selected LAB isolates were used for the
treatments: two Lactobacillus spp. (Lb) from African
catfish (AFC), one from Nile tilapia (NT), and one from
the Ethiopian honey wine (T) as:

Control: Basal feed only

Treatment 1: Basal feed+0.5 mL Lb sp.Acl
suspension 1x107 cfu/mL

Treatment 2: Basal feed+0.5 mL Lb sp.A ¢
suspension 1x107 cfu/mL

Treatment 3: Basal feed+0.5 mL Lb sp.\?
suspension 1x107 cfu/mL

Treatment 4: Basal feed+0.5 mL Lb sp.T
suspension 1x107 cfu/mL

Thirty-day-old African catfish larvae (initial weight
0.0440.00 g; length 1.12+0.12 cm) were stocked at 23
fish per 100 Laquarium. The basal diet, consistent across
all groups, was administered daily at 10% of body
weight. The probiotic treatments received the basal
feed plus a 0.5 mL suspension (1x107 cfu/mL) of their
respective activated probiotic, applied every three days
for over one month (Fakhri et al., 2019; Masjudi et al.,
2020). The probiotic concentrations used in this
experiment (1 x 107 cfu/mL) were within the established
theoretical range of 10° to 108 cfu/mL (Kechagia et al.,
2013). Water quality was maintained by siphoning 50%
of the water every two days and replenishing it. The
entire process, encompassing broodstock collection,
acclimatization, microbiological analysis, and the
probiotic experiment, spanned 120 days. The probiotic
test itself constituted only 4 weeks of this period.

Weekly samples of six fry per aquarium were
measured for weight (g) and total length (cm). Growth
performance was assessed by calculating Absolute
Growth Rate (AGR), and Survival Rate (SR) using
standard formulas (Fulton, 1902; Lauzon et al., 2010;
Lugert et al., 2016).

Absolute Growth Rate (AGR): Mean Wait gain (g) /Duration of
the Experiment (days) (Lugert et al., 2016).

Fulton Condition Factor (FCF): Mean weight (g)/TL*3*100
(Fulton, 1902).

Survival rate (SR): Final fish number/Initial fish number*100
(Lauzon et al., 2010).

Data were expressed as meantstandard deviation
(SD). A one-way analysis of variance (ANOVA) followed
by Tukey's HSD post-hoc test was used to determine
significant differences (P<0.05) among treatment
groups using SPSS (version 26).
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During the laboratory experiment, water quality
parameters were monitored weekly using a Palintest
(model MICRO 800) for temperature, dissolved oxygen
(DO), electric conductivity (EC), and total dissolved
solids (TDS), and an Adwa (model AD 8000) for pH.
Ammonia, nitrite, and nitrate levels were measured bi-
weekly using a Palintest test kit (model photometer
7500) due to reagent shortages.

Results

Of the 99 isolates obtained from the fish samples,
80.81% (n= 80) were LAB. These belonged primarily to
the genus Lactobacillus (91.25%), with smaller
proportions of Lactococcus (7.5%) and Leuconostoc
(1.25%). Lactobacillus spp. were the most prevalent
isolates. The detailed morphological and physiological
characteristics of these LAB genera are presented in
Table 1.

The 80 LAB isolates were evaluated for probiotic
potential, with a high proportion demonstrating
tolerance to pH 3 (80%, n= 64) and 0.5% bile salt
(93.75%, n=75), while fewer were tolerant to pH 2 (60%,
n= 48) (Table 2). Among 43 Lactobacillus isolates
selected for further testing based on their resilience, 16
(37.21%) exhibited inhibitory activity against four or
more reference pathogens (Table 3). Notably, three

isolates (AFG8, AFG10 and NTGS8) displayed the most
pronounced effects, with inhibition zones 215 mm
against all five tested pathogens. Subsequent antibiotic
susceptibility testing on 17 of these broad-spectrum
isolates revealed that while most were susceptible to
erythromycin (64.71%) and chloramphenicol (58.82%),
all exhibited resistance to kanamycin, ciprofloxacin,
streptomycin, and penicillin G (Table 4).

Of the screened pathogens, only Staphylococcus
aureus and Salmonella spp. were detected; Listeria,
Shigella, Pseudomonas, and E. coli were absent. S.
aureus was highly prevalent, found on 100% of fish
surfaces with an overall prevalence of 60.71%, whereas
Salmonella spp. had an overall prevalence of 32.14%
(Table 5). Susceptibility testing showed that all S. aureus
isolates were resistant to Penicillin G (100%) but
susceptible to ciprofloxacin, chloramphenicol, and
erythromycin. Salmonella spp. isolates were broadly
susceptible to chloramphenicol, with varying
susceptibility to other antibiotics (Table 6). Multidrug
resistance (MDR) was observed in both pathogens, with
profiles varying by species and fish origin (Table 7).

African catfish larvae administered probiotics
showed improved growth performance compared to the
control group over the experimental period (Figure 1).
Treatments with probiotics from African catfish gut
(Lactobacillus spp. in T1 and T2: AFG8 and AFG10)

Table 1. Morphological and physiological characteristics of LAB isolated from African catfish and Nile tilapia gut and surface samples

Characteristics Category

Shape Rod Cocci Cocci
Arrangement Single Pair or short chain
Gram reaction Positive Positive Positive
Catalase Test Negative Negative Negative
Motility test Non-motile Non-motile Non-motile
Oxidase Negative Negative Negative
Endospore Negative Negative Negative
Fermentation Homo/Hetero Homo Hetero
Growth Temperature

15°C Growth/No growth Growth Growth
37°C Growth Growth Growth
450C Growth/No growth No growth No growth
Tolerance to NaCl (%)

2% Growth Growth Growth
4.5% Growth Growth Growth
6.50% Growth/No growth Growth/No growth Growth
Identification Lactobacillus Lactococcus Leuconostoc
Number and % of isolates 73 (91.25%) 6 (7.5%) 1(1.25%)

Table 2. Acid and Bile tolerance of LAB isolated from African catfish and Nile tilapia gut and surface samples (n= 48)

Acid tolerance Bile tolerance

Source and Isolate Code Category oH2 oH3 030% 0.50%
AFG: 1,3,5,6,8,10,11,14,15, 20,30,38 Lactobacillus spp. + + + +
AFS: 3,6,7,11,12,13,14,15,18 Lactobacillus spp. + + + +
NTG: 1,4,6,7,8,9,10,14,15, 16, 17,19,20 Lactobacillus spp. + + + +
NTS: 1,2,3,4,5,7,8,9,10 Lactobacillus spp. + + + +
AFG: 26; AFS: 4,17; NTG: 18; NTS: 6 Lactobacillus spp. + + + -

AFG = African catfish gut isolate, AFS = African catfish surface isolate, NTG = Nile tilapia gut isolate, NTS = Nile tilapia surface isolate, “+ “, Tolerant,

“—“ Non-tolerant
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resulted in the highest final weight and length, with T1
being marginally higher (T1: 1.28+0.78 g, 4.70+0.92 cm;
T2: 1.2040.38 g; 4.65+0.68 cm). These were followed,
respectively, by the groups treated with probiotics
isolated from Nile tilapia gut (Lactobacillus sp. in T3:

NTGS8) and the local beverage, Tej (Lactobacillus sp. in
T4) (T3: 0.90+0.83 g, 4.30£1.08 cm; T4: 0.51+0.25
3.80+0.67 cm). Analysis of variance indicated a
significant difference in final larvae weight and length
among treatment groups (P<0.05); however, a post-hoc

Table 3. Antimicrobial activity of LAB isolated from African catfish and Nile tilapia gut and body surface samples against reference

pathogens (>4)

Salmonella enterica Serovar

Code Bacillus cereus Staphylococcus aureus Escherichia coli A . Candida albicans
Typhimurium
AFG6 13.5+0.714 13+1.4¢fe 14+Qbcd 16+0bc 00
AFG8 16+1.4]3bc 15.5+0.72bcd 17+02 16+0bc 15.5+0.71P
AFG10 17+0.712 16+0abe 16.5+0.712 16.5+0.7° 16+02b
AFG20 14+1.41¢d 13.5+0.79fe 13+0d 14+1.44 0+0
AFG24 14+1.41¢d 15+(Qbcde 13.5+0.71 14+0d 14.50.7¢
AFG30 15+1.4]3abcd 14.5+0.7¢def 15+0bc 13+1.44de 00
AFS4 15+(0abed 17+0%b 15.5+0.712b 18.5+0.72 00
AFS14 14+0cd 16+1.42bc 15.5+0.712b 13+0de 15.5+0.7°
AFS15 14+0cd 13.5+0.79fe 15.5+0.71bcd 16400 0+0
AFS18 14.5+0.71bcd 14.5+0.7¢def 15+032b 17+1.43b 00
NTG4 14+0cd 17.5+0.72 0+0 16+0bc 17.5+0.72
NTG7 14.5+0.71bcd 14+(Qcdefe 15.5+0.712b 14.5+0.7¢ 0+0
NTG8 16.5+0.712b 16.5+2.1ab 15.5+0.71bc 15+0e 15.5+0.71°
NTG15 14.5+0.71bcd 0+0.0 14+1.4]bed 00 00
NTG19 16+1.4]3bc 14+(Qcdefe 13+1.414 11.5+0.7¢ 00
NTS6 17402 12408 15+1.41bc 13.5+0.74 0+0
NTS7 14.5+0.71bcd 13+1.4¢fe 13.5+0.71¢d 14.5+0.7¢ 0+0

AFG= African catfish gut isolate, AFS= African catfish surface isolate, NTG= Nile tilapia gut isolate, NTS= Nile tilapia surface isolate. Within each
column, values with the same lowercase superscript letter are not significantly different (P>0.05), while values with different letters are significantly

different (P<0.05).

Table 4. Antibiotic sensitivity patterns of LAB isolated from African catfish and Nile tilapia gut and surface samples against different

commercial antibiotics

Source Isolate Code Ery Chlo Clind Kana Cipro Strept Pen
AFG10 21S 23S 9R R R R R
AFG24 25S 225 10R R R R R
< Gut AFGS8 265 275 10R R R R R
= AFG20 R R R R R R R
S AFG30 R R R R R R R
& AFG6 R R R R R R R
£ AFs4 R R R R R R R
< Surface AFS15 25S 25S 9R R R R R
AFS18 R R R R R R R
AFS14 23S 225 9R R R R R
NTG4 265 295 265 R R R R
© NTGS 23S 225 248 R R R R
= Gut NTG7 23S 245 23S R R R R
= NTG19 23S 19R R R R R R
2 NTG15 21S 225 R R R R R
= Surface NTS6 245 258 11R R R R R
NTS7 R R R R R R R

Ery= Erythromycin, Chlo= Chloramphenicol, Clind= Clindamycin, Kana= Kanamycin, Cipro= Ciprofloxacin, Strept= Streptomycin, Pen= Penicillin
G; AFG= African catfish gut isolate, AFS= African catfish surface isolate, NTG= Nile tilapia gut isolate, NTS= Nile tilapia surface isolate, R= Resistant,
S = Susceptible; the numbers preceding the R and S represent the zone of inhibition in mm.

Table 5. Prevalence of common fish pathogens from African catfish and Nile tilapia gut and surface samples

Source

Frequency (%) of pathogens

S. aureus Salmonella spp.
. i Gut 1(14.29) 1(14.29)
African catfish surface 7 (100) 3 (42.85)
Nile tilapia Gut 2(28.57) 1(14.29)
P Surface 7 (100) 4 (57.14)
Total 17 (60.71) 9 (32.14)
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test revealed this was primarily driven by the significant
difference between T1 and the control (P<0.05). Other
growth parameters, including weight gain and absolute
growth rate, and FCF followed a similar trend (Table 8).
All probiotic treatments had higher survival rates

compared to the control (56.5%), with T1 achieving the
highest survival at 78.3% (Table 9). During the probiotic
experiments, water temperature remained consistent
across all groups, averaging around 28.14°C. Dissolved
oxygen (DO) levels showed significant differences

Table 6. Antibiotic susceptibility patterns of S. aureus and Salmonella spp. isolated from fish samples

Antibiotics ( disc potency, pg/mL)

Antibiotic Ery (15) Clin (2) Kana (30) Cipro(5) Pen(10) Strept(10) Chlo (30)
Pathogens Source pattern Freq. (%) Freq.(%) Freq.(%) Freq.(%) Freq. (%) Freq. (%) Freq. (%)
Resistant 4 > ! 2 / !
< (57.14)  (71.43)  (14.29)  (28.57) (100) (14.29)
& Surface 3 ) 6 5 7 6
© g
° sensitive (42.86)  (28.57)  (85.71)  (71.43) . (100) (85.71)
£ Resistant - L - - L 1 -
" £ Gut (100) (100) (100)
3 Sensitive 1(100) - 1(100) 1(100) - - 1(100)
§ Resistant > 6 3 ! / 4 6
o Surface (71.43)  (85.71)  (42.86)  (14.29) (100) (57.14) (85.71)
.2 . 2 1 4 6 3 1
g sensitive (28.57)  (1429)  (57.14)  (85.71) . (42.86) (14.29)
§ . i 1 1 i 1 1 .
= Resistant (100) (100) (100) (100)
Gut 1 1 1
Sensitive (100) - - (100) . ) (100)
. 3 2 1 2
_C Resistant ND (100) (75) (25) ND (75) -
3z Surface 1 N 1 3
w Sensitive ND - ND
3 (25) (75) (25) (100)
s . 1 1
©
g 9 Resistant ND (100) - - ND - (100)
& < ou 1 1 1
% Sensitive ND - (100) (100) ND (100) -
S . 3 2 1 1
S -
g Resistant ND (75) (50) (25) ND (25)
3 © Surface 1 ) 3 3 4
E— Sensitive ND (25) (50) (75) ND (75) (100)
@ . 1 1 i 1 .
= cut Resistant ND (100) (100) ND (100)
Sensitive ND - - (1(1)0) ND - (1(1)0)

Ery= Erythromycin, Clin= Clindamycin, Kana= Kanamycin, Cipro= Ciprofloxacin, Pen= Penicillin G, Strept= Streptomycin, Chlo= Chloramphenicol;

ND= Not determined; “— “ = none of the isolates.

Table 7. MDR patterns of S. aureus and Salmonella spp isolated from fish samples

Source S. aureus Salmonella spp.
fish No. of Antimicrobial No. of No. of Antimicrobial No. of
antimicrobial resistance isolates  Total(%) | antimicrobial resistance isolates  Total(%)
resistance pattern (%) resistance pattern %
One 3 1(20) 1(20) CD/E 1(25)
African Two c/P 1(20) 1(20) Two cp/C 1(25) 2(50)
atfich Three cD/s/pP 1(20) 1(20) Four E/CD/K/S 1(25) 1(25)
Four E/CD/CIP/P 1(20) 1(20)
Five E/CD/CIP/P/K 1(20) 1(20) Five E/CD/K/S/CIP 1(25) 1(25)
K/P 1(8.3) One E 1(20) 1(20)
Two co/p 1s3)  2167) Two E/CD 1(20) 1(20)
s/c/p 1(8.3) Three E/CD/K 1(20) 1(20)
Three CD/P/CIP 1(8.3) 2(16.7)
Nile K/P/s/C 1(8.3) Four E/CD/K/S 1(20) 1(20)
tilapia Four E/CD/K/P 1(8.3) 4(33.3)
E/CD/CIP/P 2(16.7)
E/CD/K/S/P 1(8.3) Five E/CD/CIP/S/K 1(20) 1(20)
Five CD/K/S/C/P 1(8.3) 3(25)
E/CD/S/C/P 1(8.3)
Six E/CD/K/S/P/C 1(8.3%) 1(8.3)

CD= Clindamycin; P= Penicillin; E= Erythromycin; C= Chloramphenicol;

K= kanamycin; S= Streptomycin; CIP= Ciprofloxacin
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(P<0.05), with the control group exhibiting 4.45 mg/L,
lower levels compared to treatments T1 (4.92 mg/L), T2
(4.79 mg/L), and T4 (4.65 mg/L). Electrical conductivity
(EC), averaging 193.30 uS/cm; and total dissolved solids
(TDS), averaging 124.97 mg/L, were stable, showing no
notable variations among the control and treatment
groups. pH also presented significant differences
(P<0.05); the control group recorded a lower pH of 6.89

1.40 -

compared to treatments T1 (7.08) and T2 (7.06).
Ammonia (NH3), averaging 12.06 mg/L; ammonium
(NHs+), averaging 12.56 mg/L; nitrite (NO2), averaging
0.35 mg/L; and nitrate (NOs), averaging 42.16 mg/L,
concentrations did not vary significantly across the
experimental groups (P>0.05). Overall, while certain
probiotic treatments influenced DO and pH, most water
quality parameters remained largely unaffected.

5.00 4
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«+#+: Control 2 4,00 A
§1,0U 1 —_—Ti 2_3.50 1 c |
] £ —4— Contro
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Figure 1. Weekly variation of growth patterns of the African catfish larvae during probiotic treatments.
Table 8. Growth parameters of African catfish larvae treated with different probiotic strains
Week Treatment Mean Weight (g) Mean Total Length (cm) Weight Gain (g) FCF
0 - 0.04 +0.00 1.12+0.12 - -
Control 0.07 £ 0.01¢ 1.80+£0.26° 0.03+£0.01¢ 122 £+ 04
T1 0.09 £ 0.012 1.92+0.35° 0.05+0.012 0.69 £0.15
1 T2 0.08 £ 0.012b 1.72+0.35° 0.04 +0.01be 0.63+0.18
T3 0.08 +0.012b 1.92+0.26° 0.05 +0.0132b 0.89+£0.15
T4 0.07 £0.01¢ 1.70+0.46° 0.03+0.01°¢ 1.48 + 1.05
Control 0.10 £ 0.05¢ 242 £0.352 0.07+0.052 0.92 + 0.27
T1 0.2 +£0.092 2.78 £0.562 0.16 £ 0.092 0.77 £0.20
2 T2 0.18 +0.082b 2.68+0.392 0.13+0.082 1.11+0.17
T3 0.17 £0.082b 2.52+£0.522 0.06 £0.002 1.74 £ 0.88
T4 0.10 £0.00¢ 2.25+0.192 0.03+£0.012 0.88 £0.20
Control 0.15+0.08b 2.82+0.26¢ 0.11+0.082 0.87 £0.25
T1 0.40+0.15°2 3.72+£0.292 0.36+0.15°2 1.20+0.31
3 T2 0.35+0.10°2 3.45 +0.39% 0.31+0.102 1.28+0.40
T3 0.33+0.192 3.38+0.352 0.29 +£0.19° 1.12+0.58
T4 0.17 £0.08° 2.98 +0.37bc 0.10£0.052 0.82+0.23
Control 0.35+0.10° 3.38+0.29°b 0.31+0.11b 0.94+0.24
T1 1.28+0.78°? 4.70+£0.922 1.24 +0.78° 1.96+1.33
4 T2 1.20+£0.38°2 4.65 +0.682 1.16 +0.382b 0.92 £0.22
T3 0.90+0.83¢2b 4.30+1.082 0.86+0.832b 0.62 £0.16
T4 0.51+0.25°b 3.80+0.67b 0.47 £0.2572b 0.89+0.17

T=Treatment; T1 & T2= Lactobacillus spp. isolated from African catfish gut; T3= Lactobacillus sp. isolated from Nile tilapia gut, T4=
Lactobacillus sp. isolated from Tej (honey wine); Similar letters along the same column indicate lack of significant difference (P>0.05)
whereas different letters indicate a significant difference (P<0.05).

Table 9. Survival rate (SR) of experimental fish during probiotic treatments

Group Initial number stocked (nj) Final number survived (ny) SR (%)
Control 23 13 56.5
T1 23 18 78.3
T2 23 17 73.9
T3 23 17 73.9
T4 23 15 65.2
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Discussion

This study confirms the remarkable potential of
indigenous LAB to enhance African catfish larviculture
by addressing the critical challenge of high early larval
mortality, thereby contributing to more sustainable
aquaculture practices (Subedi & Shrestha, 2021). This
aligns with findings in other fish species such as Atlantic
cod (Gadus morhua) where Carnobacterium divergens
probiotics remarkably improved larval growth and
survival (Puvanendran et al., 2021). The prevalence of
Lactobacillus species (91.25%) among the isolates aligns
with previous research identifying it as a dominant
probiotic genus in the gut of freshwater fishes,
suggesting the local fish microbiome is a rich source for
probiotic candidates (Muthukumar & Kandeepan, 2015;
Kato et al., 2016). The adaptability of these isolates,
demonstrated by their tolerance to varied temperatures
and salinity, further supports their environmental
adaptability and suitability for aquaculture applications
(Belicova et al., 2013; George et al., 2018).

A high proportion of the isolated LAB
demonstrated crucial probiotic characteristics, including
tolerance to physiologically relevant acid and bile
concentrations, a prerequisite for survival and efficacy
within the gastrointestinal tract (Ayo-Omogie & Okorie,
2016; Hussain et al., 2021; Olorunshola et al., 2025).
Furthermore, a subset of these resilient isolates
exhibited broad-spectrum antimicrobial activity against
multiple fish pathogens. This inhibitory action is likely
mediated by the production of metabolites such as
bacteriocins and organic acids, which disrupt pathogen
viability and supports the potential of these strains as
biotherapeutic agents (Rattanachaikunsopon &
Phumkhachorn, 2010; Amarantinia et al., 2019).

The study also identified the presence of S. aureus
and Salmonella spp., particularly on fish surfaces, which
contrasts with other regional findings and highlights a
potential human health risk during fish handling,
underscoring the need for stringent hygiene (Tesfaye et
al., 2018; Olorunshola et al., 2025). The detection of S.
aureus and Salmonella spp. on fish surfaces in this study
underscores a profound public health risk, potentially
contrasting with other regional findings (/bid) primarily
focused on gram-negative internal pathogens. Given the
prevalence of unhygienic fish handling practices in
Ethiopia, as highlighted in the provided literature, these
findings necessitate stringent hygiene protocols from
capture to consumption to prevent human foodborne
illness. This emphasizes the need for a comprehensive
approach to food safety, expanding beyond typical
internal pathogens to surface contaminants, thereby
enriching the understanding of fish-borne hazards in the
region. A more critical finding was the widespread
antibiotic resistance observed in both the beneficial LAB
and the isolated pathogens. The high resistance of LAB
to antibiotics like kanamycin and penicillin G raises
concerns about the potential for horizontal gene
transfer in aquatic environments (Davies & Dauvies,

2010). Similarly, the resistance of S. aureus to penicillin
G, consistent with other local studies, confirms the
circulation of resistance genes in the region (Beyene et
al., 2017).

The in vivo trial demonstrated that probiotic
supplementation considerably improved larval growth,
condition, and survival. This enhancement is attributed
to probiotics' ability to improve nutrient utilization,
stimulate the immune system, and maintain water
quality (EI-Haroun et al., 2006; Wang et al., 2019; Ringo,
2020; Calcagnile et al., 2024). Critically, the study
revealed the importance of host-specificity; probiotics
isolated from African catfish gut (AFG10 and AFGS)
conferred the greatest benefits, substantially
outperforming the probiotic sourced from a non-aquatic
environment. This supports the principle that host-
derived probiotics are often more effective due to
superior adaptation and colonization capabilities, a
finding consistent with previous aquaculture studies
(Nguyen et al., 2017; Putra et al., 2017; Masjudi et al.,
2020). However, this study was limited by the lack of
molecular identification of the most effective strains
due to funding and resource constraints; therefore, a
follow-up study addressing this limitation is
recommended.

The observed stability in most water quality
parameters, such as temperature, salinity, EC, TDS, and
nitrogenous compounds (ammonia, ammonium, nitrite,
and nitrate), across the control and probiotic-treated
groups is a crucial finding. This indicates that the
probiotic interventions did not negatively impact the
fundamental physical and chemical characteristics of
the water, which is essential for maintaining a healthy
aquatic environment in aquaculture. The slight
variations observed in dissolved oxygen (DO) and pH,
with some probiotic treatments showing higher DO and
pH than the control, suggest a subtle positive influence
of the probiotics on these parameters. Elevated DO can
indicate improved aerobic conditions, potentially linked
to probiotic metabolic activity or reduced organic load,
while a moderately higher pH could signify a more
buffered system. These minor shifts, however, did not
destabilize the overall water quality, reinforcing the
safety and environmental compatibility of using these
indigenous LAB as probiotics, aligning with the general
discussion on their potential to enhance aquaculture
practices without compromising environmental
parameters.

Conclusion

In conclusion, this study successfully demonstrates
that indigenous, host-specific LAB can remarkably
enhance African catfish larviculture, offering a
promising strategy to address the critical challenge of
high early larval mortality and improve seed supply in
Ethiopia and elsewhere. The research identified native
Lactobacillus strains with robust probiotic properties
that improved both larval growth and survival,
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underscoring the value of the local fish microbiome as a
source for developing sustainable aquaculture
solutions. However, the findings also highlight the
pressing issue of antibiotic resistance in both probiotic
candidates and pathogenic bacteria, which warrants
caution and further investigation.

To build upon these findings, future research
should focus on molecular identification of the most
promising LAB strains to understand their specific
mechanisms of action. Further studies are needed to
optimize application strategies, including dosage,
delivery methods, and long-term effects under various
production systems. Additionally, the high prevalence of
surface pathogens like S. aureus and the patterns of
antibiotic resistance demand focused investigation into
contamination sources and the development of
strategies to mitigate the spread of resistance in
aquaculture environments (Tamminenm et al., 2011).
Ultimately, this work provides a strong foundation for
the development of effective, sustainable, and safe
probiotic applications in African aquaculture.
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